麻豆视频av

设为麻豆视频av | 加入收藏 | 宁波大学
麻豆视频av
麻豆视频av麻豆视频av概况 师资队伍科学研究人才培养党群工作党风廉政学生工作校友之家招聘信息内部信息English
师资队伍
 师资力量 
 全体教师 
 博士生导师 
 硕士生导师 
 
当前位置: 麻豆视频av>>师资队伍>>全体教师>>正文
王敬萍
2024-10-28 14:32     (点击:)

个人信息 | PERSONAL DATA

Last Name: Wang             First  Name: JingPing

Place  of  Birth:  Shanxi,  P.R. China

Email:  [email protected]

 

通信地址 | COMMUNICATION ADDRESS:

School of Mathematics and Statistics Ningbo University

Ningbo 315211, P.  R. China

 

研究方向 | RESEARCH INTERESTS

Algebraic and Geometric Structures for both Commutative and Noncommutative Integrable Systems; Integrability conditions and Classification;

Algebraic quantisation of dynamical  systems;

Exact solutions for discrete and continuous nonlinear systems


教育背景 | EDUCATION BACKGROUND

    The LASR (Leadership for Areas of Significant Responsibility) programme, University of Kent, Canterbury,  UK, 2014-2015.

    PGCHE (Postgraduate Certificate in Higher Education), University of Kent, Canterbury, UK, 2004-2007.

    Ph.D.  in  Mathematics  (Wiskunde),  Vrije  Universiteit,  Amsterdam,  The  Netherlands,  1994-  1998.

    M.S. in Applied Mathematics, Tsinghua University, Beijing, P.R. China, 1990-1993.

    B.S. in Applied Mathematics, Peking University, Beijing, P.R. China, 1986-1990.

 

工作经历 | PROFESSIONAL EXPERIENCE

 

    2024.10 - now, Professor, School of Mathematics and Statistics, Ningbo University.

    2004.07 - 2024.09,  Lecturer,  Senior Lecturer (2010),  Reader (2013) and Professor (2016),  School of Mathematics, Statistics & Actuarial Science, University of Kent, UK

    2003.01 - 2004.06, Senior Research  Associate,  Department  of  Mathematics,  Brock  University, Canada

    1999.10 - 2003.01, NWO Postdoctoral Researcher, Divisie der Wiskunde en Informatica, FEW,   Vrije  Universiteit,  Amsterdam,  The Netherlands

    1998.10 - 1999.10, NWO talent-Fellowship, School of Mathematics, University of Minnesota, Minneapolis, Minnesota

 科研项目及奖励 | RESEARCH GRANTS


    EP/V050451/1 (Engineering and  Physical  Sciences  Research  Council  (EPSRC)):  “A  novel  ap- proach to integrability of semi-discrete systems”.  PI with co-PIs:  A. Mikhailov and V. Novikov,

£77,538, 01/2021-06/2022.

    11944 (LMS Conference Grants Scheme 1): “Poisson Structures and Noncommutative Integra- bility”.  £4500. 2022.

    EP/P012698/1 Exact solutions for discrete and continuous nonlinear systems. EPSRC, PI, 05/2017-05/2021, £202,787

    11310 (LMS Conference Grants Scheme 1): “Algebraic Methods in Theory of Differential and Difference Equations”. £4130. 6-7 December,  2013.

   EP/I038659/1 (EPSRC):”Structure of partial difference equations with continuous symmetries and conservation laws”. £105,173. 01/2012 –07/2015.

 

代表性论文与出版物 | PUBLICATIONS

 

Refereed  Journal Papers

 

1.    Hamiltonians for the quantised Volterra hierarchy. (co-authors: S Carpentier, AV  Mikhailov) Nonlinearity  37  (2024)  095033  (21 pages).

2.    Hamiltonian and recursion operators for a discrete analogue of the Kaup-Kupershmidt equation. (co-authors:    E.   Peroni)   Open   Communications   in   Nonlinear   Mathematical   Physics,   Special Issue in Memory of Decio Levi (2024) 1-14.

3.    Quantisations  of  the  Volterra  hierarchy.   (co-authors:   S  Carpentier,  AV   Mikhailov)  Lett  Math Phys  112  (2022)  94  (38 pages).

4.    Perturbative Symmetry Approach  for Differential-Difference Equations.  (co-authors:  AV  Mikhailov, VS  Novikov)  Commun.  Math.  Phys.  393  (2022)  1063-1104.

5.    Hamiltonian structures for integrable nonabelian difference equations. (co-author:  M.  Casati), Commun.  Math.  Phys.  392,  219-278   (2022).

6.    Multi-component Toda lattice in centro-affine Rn. (co-authors: X Duan, C Li) Theoretical and Mathematical  Physics  207  (2021)  701-712.

7.    Recursion and Hamiltonian operators for integrable nonabelian difference equations.  (co-author: M  Casati)  Nonlinearity  34  (2021) 205-236.

8.    PreHamiltonian  and  Hamiltonian  operators  for  differential-difference  equations.    (co-authors: S  Carpentier,  AV   Mikhailov)  Nonlinearity  33  (2020) 915-941.

9.    Remarks  on  certain  two-component  systems  with  peakon  solutions.  (co-authors:  Hone,  Andy and  Novikov,  Vladimir)  Journal  of  Geometric  Mechanics,  11  (2019) 561-573.

10.    Rational recursion operators for integrable differential-difference equations. (co-authors: S Car- pentier,  AV   Mikhailov)  Communications  in  Mathematical  Physics,  370  (2019)  807-851
 

11.    A Darboux-Getzler theorem for scalar difference Hamiltonian operators. (co-author: M. Casati), Commun.  Math.  Phys.  374  (2019)   1497-1529.

12.    Generalizations of the short pulse equation. (co-authors: Hone, Andy and Novikov, Vladimir) Letters in Mathematical Physics, 108 (2018) 927-947.

13.    Wave fronts and cascades of soliton interactions in the periodic two dimensional Volterra sys- tem.   (co-authors:   R.  Bury,   A.  V.  Mikhailov)  Physica  D:  Nonlinear  Phenomena,  347  (2017) 21-41.

14.    Two-component generalizations of the Camassa-Holm equation.  (co-authors:  A.  N.W.  Hone,

V. S. Novikov) Nonlinearity, 30 (2017) 622-658.

15.    Symbolic Representation and Classification of N = 1 Supersymmetric Evolutionary Equations. (co-authors:   K.  Tian)  Studies  in  Applied  Mathematics,  138  (2017)  467-498.

16.    Darboux transformation for the vector sine-Gordon equation and integrable equations on a sphere.   (co-authors:   A.  V.  Mikhailov,  G.  Papamikos)  Letters  in  Mathematical  Physics,  106  (2016) 973-996.

17.    Dressing method for the vector sine-Gordon equation and its soliton interactions. (co-authors:

A.   V. Mikhailov, G. Papamikos) Physica D: Nonlinear Phenomena, 325 (2016) 53-62.

18.    Representations of sl(2, C) in the BGG category O and master symmetries. Theoretical and Mathematical  Physics,  184  (2015)  1078-1105.

19.    Darboux transformation with Dihedral reduction group . (co-authors:  A.  V.  Mikhailov,  G. Papamikos)  Journal  of  Mathematical  Physics,  55  (2014).   113507.   arXiv:1402.5660.

20.    Hamiltonian evolutions of  twisted  gons  in  RPn  ,  (co-authors:  G.  Mari-Beffa).  Nonlinearity  26 (2013)  2515-2551.  arXiv:1207.6524

21.    Darboux transformations and Recursion operators for differential  difference  equations,  (co- authors:   F.   Khanizadeh   and   A.V.   Mikhailov).    Theoretical   and   Mathematical   Physics   177 (2013),  1606-1654.  arXiv:1305.0588

22.    Discrete moving frames and discrete integrable systems, (co-authors: E. Mansfield and G. Mari- Beffa). Foundations of Computational Mathematics 13 (2013) 545-582.

23.    Recursion  operator  of  the  Narita-Itoh-Bogoyavlensky  lattice.   Stud.   Appl.   Math.   129(3):309– 327, 2012.

24.    A new recursion operator for Adler’s equation in the Viallet form, (co-authors: A.V. Mikhailov). Physics Letters A 375:  3960–3963, 2011.

25.    Cosymmetries and Nijenhuis recursion operators for difference equations, (co-authors:  A.V. Mikhailov  and  Pavlos  Xenitidis)  .   Nonlinearity  24:2079–2097, 2011.

26.    Recursion operators, conservation laws and integrability conditions for difference equations, (co-authors: A.V. Mikhailov and Pavlos Xenitidis).  Theoretical  and  Mathematical  Physics, 167(1):421–443, 2011.

27.    The Hunter-Saxton equation: remarkable structures of symmetries and conserved densities. Nonlinearity  23:2009–2028, 2010.
 

28.    Extension of integrable equations. J. Phys. A: Mathematical and Theoretical 42, 362004, Fast Track  Communication 2009.

29.    Lenard scheme  for  two-dimensional  periodic  Volterra  chain.  Journal  of  Mathematical  Physics 50(2),  023506, 2009.

30.    Integrable peakon equations with cubic nonlinearity, (Co-author: A.N.W. Hone). J. Phys. A: Mathematical and Theoretical 41, 372002, Fast Track Communication 2008.

31.    Symmetry  structure  of  integrable  non-evolutionary  equations,  (co-author:  V.S.  Novikov).  Stud- ies  in  Applied  Mathematics,  119(4):393–428, 2007.

32.    On  classification  of integrable  non-evolutionary equations,  (co-authors:   A.V.  Mikhailov  and

V.S. Novikov).  Studies in Applied Mathematics 118:419–457, 2007.

33.    On the Structure of (2 + 1)–dimensional Commutative and Noncommutative Integrable Equa- tions.  Journal of Mathematical Physics 47(11), 113508,  2006.

34.    Integrable  systems  in  n-dimensional  conformal  geometry,  (co-author:   J.A.  Sanders).   J.  Diff. Eq.  Appl.  12(10): 983–995, 2006.

35.    Partially  integrable  nonlinear  equations  with  one  high  symmetry,  (co-authors:  A.V.  Mikhailov and V.S. Novikov).  J. Phys.  A: Math.  Gen.  38:L337-L341, 2005.

36.    On the Integrability of Systems of second order Evolution Equations with two Components, (co-author:   J.A.  Sanders).   Journal  of  Differential  Equations,  203(1):1–27,  2004.

37.    Integrable systems in n-dimensional Riemannian Geometry, (co-author: J. A. Sanders). Moscow Mathematical   Journal,   4(3):1369–1393 2003.

38.    Prolongation algebras and  Hamiltonian  operators  for  peakon  equations,  (co-author:  A.N.W. Hone). Inverse problems, 19(1):129–145, 2003.

39.    On a family of  operators  and  their  Lie  algebras,  (co-author:  J.A.  Sanders).  Journal  of  Lie Theory, 12(2):503–514, 2002.

40.    On integrable systems in 3-dimensional Riemannian geometry, (co-authors:  G. Mar´ı Beffa, J.A. Sanders).  Journal of Nonlinear Science, 12:143–167, 2002.

41.    A List of 1 + 1 Dimensional Integrable Equations and Their Properties, Journal of Nonlinear Mathematical Physics, 9 - Supplement 1:213–233, 2002.

42.    Ghost Symmetries, (co-authors: P.J. Olver,  J.A.  Sanders).  Journal  of  Nonlinear  Mathematical Physics, 9 - Supplement 1:164–172, 2002.

43.    Integrable  Systems  and  their  Recursion  Operators,  (co-author:  J.A.  Sanders).  Nonlinear  Anal- ysis, 47(8):5213–5240, 2001.

44.    On Integrability of Systems  of  Evolution  Equations,  (co-authors:  F.  Beukers,  J.A.  Sanders). Journal of Differential Equations, 172:396–408, 2001.

45.    On Recursion Operators, (co-author:  J.A. Sanders). Physica D, 149:1–10, 2001.

46.    Classification of Integrable One-Component Systems on Associative Algebras, (co-author: P.J.Olver). Proceedings  of  the  London  Mathematical  Society,  81:566–586,  2000.

 

47.    On the Integrability of Non-Polynomial Scalar Evolution Equations, (co-author: J.A. Sanders). Journal of Differential Equations, 166:132–150, 2000.

48.    On the integrability of homogeneous scalar evolution equations, (co-author:  J.A. Sanders).  Jour- nal  of  Differential  Equations,  147:410–434, 1998.

49.    One symmetry does not imply integrability, (co-authors: F. Beukers, J.A. Sanders). Journal of Differential Equations, 146:251–260, 1998.

50.    Combining Maple and Form to decide on integrability  questions,  (co-author:  J.A.  Sanders). Computer Physics Communications, 115:1-13,  1998.

51.    Classification of conservation laws  for  KdV–like  equations,  (co-author:  J.A.  Sanders).  Mathe- matics and Computers in Simulation, 44:471–481, 1997.

52.    Hodge decomposition and conservation laws, (co-author: J.A. Sanders).  Mathematics  and Computers in Simulation, 44:483–493, 1997.

Refereed  Conference Proceedings

53.    Symbolic Computation of Polynomial Conserved  Densities,  Generalized  Symmetries,  and  Re- cursion Operators for Nonlinear Differential-Difference Equations, (co-authors: W. Hereman and  J.A. Sanders and J. Sayers). Proceedings for the Workshop on Group Theory and Numer- ical Methods (2003), CRM Proc.  Lecture Notes 39:133–148,  2005.

54.    Generalized Hasimoto Transformation and vector Sine-Gordon equation, “Symmetry and Per- turbation Theory” (proceedings of the conference held in Cala Gonone, 19-26 May 2002), S. Abenda, G. Gaeta and S. Walcher eds., World Scientific, 277–285, 2003.

55.    Classification of Symmetry-Integrable Evolution Equations, (co-authors:  P.J. Olver, J.A. Sanders). CRM Proceedings and Lecture Notes, 29:363–372,  2001.

56.    On  Integrability  of  Evolution  Equations  and  Representation  Theory,  (co-author:   J.A.  Sanders). in The geometrical study of differential equations (Washington, DC, 2000):85–99, 2001.

57.    The symbolic method and cosymmetry integrability of  evolution  equations,  (co-author:  J.A. Sanders). Equadiff’99, International Conference on Differential Equations, World Scientific, Singapore, 824–831, 2000.

58.    On the classification of integrable systems, (co-author: J.A. Sanders). Proceedings of the Fourth International Conference on Mathematical and Numerical Aspects of Wave Propagation, Ed.:

J.A. DeSanto, Colorado School of Mines, Golden, Colorado, USA, June 1-5, 1998, SIAM, Philadelphia, 393–397.

59.    Normal forms of a class of linear Generalized Hamiltonian Systems associated with semisimple     Lie algebra, (co-author:  D. Wang).  Dynamical Systems and Chaos, Eds.:  N. Aoki, K. Shiraiwa,   and Y. Takahashi,  World  Scientific, 260–263, 1994.

Book Articles

60.    Number Theory and the  Symmetry  Classification  of  Integrable  Systems,  (co-author:  J.A. Sanders) in  Integrability  ,  89–118,  Lecture  Notes  in  Physics,  Springer,  ed.  A.V.  Mikhailov, 2009.

61.    Symbolic  representation  and  classification  of  integrable  systems,  (co-authors:  A.V.  Mikhailov and V.S. Novikov, nlin.SI/0712.1972) in Algebraic Theory of Differential Equations, 156–216, Cambridge University Press, eds. M.A.H. MacCallum and A.V. Mikhailov, 2009.

 

 

关闭窗口
宁波大学 | 图书馆 | 中美精算

地址:宁波市江北区风华路818号宁波大学包玉书9号楼